
How to calculate the probability mass function of a 
train of random pulses each containing a random 

number of counts. (this could be generalized to some 
random continuous response.) 

Milind Diwan 
8/28/2017 

This follows certain standard mathematical 
procedure from the theory of probability. 



Question
Mean of λ electrons come to the electroluminescence region 

Each electron generates 𝛼 photons.  

What is the mean number of photons ? 

What is the variance on the number of photons ? 

λ electrons per unit time
𝛼 photons per electron

Other questions are similar. If mean of λ photons convert in a photo-sensor 
with a mean gain of 𝛼 electrons per photon what is the distribution of the 
output number of electrons.   

Basically, an average of λ packets arrive each with an average of 𝛼 items 
in each packet.  What is the mean and variance of the total number of 
items ?



Distribution of incoming electrons with Poisson mean of λ
K  is the number of electrons, a discrete random variable with probability mass function

PK (k) = λ
k

k!
e−λ

Generating function for this is (think of sk  as a tag for the value of the probability)

GK (s) ≡ skPK (k)
k=0

∞

∑ = skλ k

k!
e−λ

k=0

∞

∑ = esλe−λ = eλ (s−1)

GK  is also expressed as the expectation value for sk

GK (s) = E[sk ]
Probability is a sequence of numbers and GK (s) allows us to organize this sequence 
in a compact manner.  The series always converges for s ≤1.

Similarly, the distribution of photons from each electron has probability 

PL (ℓ)=α
ℓ

ℓ!
e−α   and a similar generating function GL (s).

We have labeled the two generating functions to distinguish them from each other.
Additionally recall that the mean for a Poisson distribution with parameter λ  is 
E[k]= λ  and the variance is also E[k2 ]− (E[k])2 = λ



Probability for total photon count
Total number of photons is  a discrete random number Z. 

Z = Li
i=1

K

∑   

This is a sum of K random numbers, each is the photon count from an electron. 
Now, it is obvious that the mean number of total photons must be λ ×α ,  where
λ   is the Poisson mean for the number of electrons and α  is the Poisson mean for 
the number of photons emitted by each electron.  
However, the random number for the total number of photons is not a product of 
the two random numbers K (the number of electrons) and L (the number of photons). 
What we are trying to calculate is the generating function for the total number of photons 
and consequently the probability mass function for the total number of photons. 

GZ (s) ≡ E[sz ]= szPZ (Z = z)
z=0

∞

∑
Here PZ  is unknown.  We need to calculate the mean and variance of PZ .



Expectation values
Start with the generating function for total number of photons 
(recall that K is the r.v. for electrons and L is the r.v. for photons/electron) 

GZ (s) ≡ szPZ (Z = z)
z=0

∞

∑ = E[sz ]= E[s
Li

i=1

K

∑
K = k]

k=0

∞

∑ i PK (k)

= E[sL1sL2 ...sLK K = k] i PK (k)
k=0

∞

∑
This says that the total expectation for sz  is the same as  
the average of the conditional expectation for k electrons (averaged over the 
probability of obtaining k electrons).  This is the law of total expectation.  
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
Imagine that outcomes {a,b,c} have probability {0.1, 0.2, 0.7}, respectively. 
For each outcome we get an average of {5, 7, 10} dollars.  
Then the expectation for the  total amount of money is 
5 × 0.1+7 × 0.2+10 × 0.7=8.9
The dollar value for each outcome could also have a distribution, but 
we are averaging over it to get the total expectation.  



Conditional  expectation
And so we have to first calculate the conditional expectation 

E[sL1sL2 ...sLK K = k]= sℓ1sℓ2 ...sℓk PL (ℓ1)PL (ℓ2 )...PL (ℓ k )
ℓ1,ℓ2 ...ℓK =0

∞

∑
since all PL  are identical Poisson, the sums are identical, and therefore 

E[sL1sL2 ...sLK K = k]= sℓPL (ℓ)
ℓ=0

∞

∑⎧⎨
⎩

⎫
⎬
⎭

k

= (GL (s))k

E[sL1sL2 ...sLK K = k]= (eα (s−1) )k

To be clear, this is the generating function for the number of photons under the 
condition that exactly k electrons emitted photons in the electroluminescent region. 

Or that we have exactly k packets each with a random number of items {ℓ1,ℓ2,...,ℓ k}.
The sum of this array of packets has the probability encoded in the above generating function. 

Now we have to calculate the average of this expectation over the number of incoming
electrons.  



Total expectation
Now we calculate the expectation of this conditional expectation.

E[sz ]= (eα (s−1) )k × PK (k) =
k=0

∞

∑ ( f )k × PK (k) =
k=0

∞

∑ eλ ( f −1) = eλ (eα ( s−1)−1)

Notice that this could be succinctly restated as 
GZ (s) = GK (GL (s)) ....    if this is confusing notice that the argument for GK  is GL

And so we have the generating function 

GZ (s) = eλ (eα ( s−1)−1)

We can now use this to obtain the mean, variance, and the probability mass function for
the total number of photons.  Notice that the function is not symmetric in λ  and α .
One would incorrectly think that it should be if we naively think of the total number of photons as a
random variable that is a product of two independent random variables. 
It is easy to obtain the mean and variance using these formulas. 

E[z]= dGZ (s)
ds s=1

= λeλ (eα ( s−1)−1)α eα (s−1)
s=1

= λα        as expected. 

Var[z]= E[z2 ]− (E[z])2 = (d
2GZ (s = 1)
ds2 + E[z])− (E[z])2    ... gets a little tricky here. 

Each derivative of GZ  pulls down z,  (z -1),  etc. Recall that GZ (s) = E[sz ].

Var[z]= λα ⋅eα (s−1)+λ (eα ( s−1)−1) ⋅(α + λα ⋅eα (s−1) ) s=1 + λα − λ 2α 2

Var[z]= λα (α +1)



Probability mass function
Notice that the variance is in fact not symmetric in λ  and α  and it is always larger than 
the variance expected from a Poisson probability mass function with a mean of αλ.
Var[z]= λα (α +1)
It is best to understand this using the full probability mass function which we will now
calculate.  We have to invert  GZ (s) ≡ szPZ (z)

z≥0
∑  to obtain PZ   where z ≥ 0 is an integer.

It is easiest to do this using Fourier series with the substitution s → eis

ϕZ (s) = GZ (eis ) = eλ (eα (eis−1)−1)

This is called the characteristic function. There is a formal mathematical relationship here 
which we will not explain. Most importantly, the characteristic function of a probability mass 
function always exists and is finite.  Now the inverse is easily written down as this

PZ (z) = 1
2π

ϕZ (s) ⋅e− i⋅s⋅z ds
−π

π

∫
Notice that z is an integer and ϕZ  is an infinite series with each probability tagged by a 
positive integer power of eis . 
Over the inteval [-π ,π ],  any term that does not have the same power as z will get zeroed out. 
This is just like a Fourier series. The integral can be calculated numerically for specific values of 
λ  and α  and z. The full form is here.  

PZ (z) = 1
2π

eλ (eα (eis−1)−1) ⋅e− i⋅s⋅z ds
−π

π

∫   where z ≥ 0 is an integer



Examples. 

Calculation, mean and std from formula
Monte Carlo, mean/standard deviation 

from simulated data
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The above could be generalized to some arbitrary discrete or continuous response 
function.  This response function is called the "jump" (J) distribution. 
The resulting distribution is called a sputtering-Poisson (SP) distribution (and other names)
And so if a mean number of λ  particles convert in a detector with some response 
distribution such as the Gaussian, Exponential, or  Landau distribution how can we calculate the 
mean and variance ?

Jump PDF Charac. func. ΦJ(t)

Gaussian

Exponential

Landau

1
2πσ

e−(x−µ )/2σ
2 eitµ i e−σ

2t2 /2

1
α
e−αx

1

(1− it
α
)

L(µ,c) eitµ i e
− ct (1+2i

π
Log t )



For a sputtering Poisson with Gaussian as jump. We will call the random number XSG

ϕSG (t) = e
λ eitµ ⋅e−σ

2t2 /2−1⎡
⎣⎢

⎤
⎦⎥  .....    The PDF can be obtained by an inverse Fourier transform. 

xSG = −i dϕSG

dt
(t = 0) = µ ⋅λ     ..... as expected. 

xSG
2 = (−i)2 d 2ϕSG

dt 2 (t = 0) = λ(σ 2 + (λ +1)µ2 )

Var(x) = xSG
2 − xSG

2 = λ(σ 2 + µ2 )  ....  you are welcome to do the algebra. 

Assume that there are λ=5 Hz of muons in a detector. And each muon produces a 
charge pulse that is Gaussian distributed with (µ ±σ )(2.00 ± 0.02) fc each.  

Then the mean value of the charge each second is λµ=10 fc
The variance on the charge will be λ(σ 2 + µ2 ) ≈ λµ2 = 500 fc2

Notice that for small σ ,  the ratio 
Var(x)
xSG

= λ(σ 2 + µ2 )
µ ⋅λ

≈ µ   .....   Obviously this is only if λ > 0 and µ≫σ   

Thus only from the mean and the variance of a current one could determine the mean
response of a detector.  



For a sputtering Poisson with Exponential as jump. We will call the random number XSE

ϕSE (t) = e
λ it /α

1−it /α
⎡
⎣⎢

⎤
⎦⎥  .....    The PDF can be obtained by an inverse Fourier transform. 

xSE = −i dϕSE

dt
(t = 0) = λ

α
    ..... as expected. 

xSE
2 = (−i)2 d 2ϕSE

dt 2 (t = 0) = λ
α 2 (2 + λ)

Var(xSE ) = xSE
2 − xSE

2 = 2λ
α 2   ....  Don't think I have screwed up the algebra  

Again there are λ=5 per day of rain showers. And each showers produces a 
α −1 = 5 inches of rain with an exponential distribution.    

Then the mean value of rain per day  is λ /α=25 inches
The variance on the rain will be 2λ /α 2 = 250 inch2  ≈ (16inch)2...quite large

The final distribution is not so simple. It can have many zeros, and has a rise 
and  fall.   
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For a sputtering Poisson with Landau as jump. We will call the random number XSL

ϕSL (t) = e
λ eitµe

− ct (1+2 i
π
Log t )

−1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  .....    It is possible to simulate this.  

The mean and variance are undefined.  It is one of those crazy distributions.  
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Take λ  =5 
And Landau location parameter µ  = 20 
and Landau shape parameter c = 1

We will work on various quantities regarding this 
distribution in subsequent work



Jump PDF parameters Mean Variance

Poisson

Normal

Exponetial

Landau undef. undef

1
2πσ

e−(x−µ )/2σ
2

Main distribution  PK (k) =  λ
k

k!
e−λ

PL (k) = α
k

k!
e−α

1
α
e−αx

L(µ,c)

λα λα (α +1)

λµ

λ /α

λ(σ 2 + µ2 )

2λ /α 2


